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Abiotic Factors and Plant Communities Shape the
Distribution of Soil Pathogenic Oomycetes in Chinese

Grasslands

Junsheng Ke, Chen Zhu, Peixi Jiang, Peng Zhang, Kui Hu, Yilin Dang, Yao Xiao, Mu Liu,
Huiying Liu, Xiang Liu,* and Ville-Petri Friman

1. Introduction

The outbreaks of emerging phytopathogens constrain socioeconomic

development globally and are expected to intensify in the future along with
climate change. Oomycetes, a group of fungus-like eukaryotes, include many
phytopathogenic species, making it critical to understand the drivers of their
diversity and distribution. This work analyzes 972 soil samples from three
major grassland types in China and found that soil phosphorus availability
drove oomycete richness, while humidity and nitrogen content affected
community composition. Pathogenic oomycete abundance is mostly
influenced by precipitation, temperature seasonality, and plant species
richness. This work creates a distribution atlas of pathogenic oomycete
richness and abundance in Chinese grasslands, using space-for-time methods
to predict future outbreak areas under climate change. Model predictions
indicate a potential increased risk of oomycete disease in ~42% of the
grassland area under SSP 1-2.6 and SSP 5-8.5 climate scenarios, particularly
in portions of typical and meadow grasslands. This study enhances the
understanding of the drivers behind the distribution of pathogenic oomycetes
and highlights the need for disease management strategies in the face of

climate change.

The plant disease outbreaks caused by
microbial pathogens disrupt food supply
chains, threaten cotton and timber produc-
tion, impact international trade, and jeop-
ardize terrestrial ecosystem health and fu-
ture food security.['?] The damage caused
by plant pathogens has a huge impact on
global crop production, resulting in an-
nual yield reductions ranging from 10%
to 20%.341 Combined with previous stud-
ies, global climate change and intensi-
fied human activities are likely to further
aggravate the emergence and spread of
phytopathogens,>™! resulting in increased
crop losses in the future. While most re-
search to date has focused on the im-
pacts of pathogens in agricultural systems,
plant pathogens are also a normal part
of microbiota in natural ecosystems and
play an essential role in inducing con-
specific negative density dependence,[1%11]
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maintaining plant diversity,['?] shaping biodiversity-productivity
relationships,'*) and facilitating ecological succession.['* As nat-
ural ecosystems are more heterogeneous and diverse, they often
also hold relatively higher diversity of phytopathogens,**! form-
ing a potential reservoir from where they could spill over and
colonize into agro-ecosystems through natural dispersal, weather
disruption or due to human activities.['®) Understanding the dis-
tribution and drivers underlying plant pathogen richness, com-
position and abundance in natural ecosystems is hence critical
for agroecosystem sustainability.”:”]

One important group of phytopathogens with both environ-
mental and agricultural populations is oomycetes — a distinct
group of fungal-like eukaryotic microorganisms phylogenetically
closely related to diatoms and brown algae.'81°] Unlike fungi,
oomycetes possess unique biological traits, such as cellulose-
based cell walls and diploid-dominant life cycles, which not only
distinguish them evolutionarily and functionally, but also shape
their ecological interactions and responses to environmental
gradients.[?”] These microorganisms also include several socioe-
conomically important pathogens such as Phytophthora infestans
that caused the Irish Potato Famine.?!l Several previous stud-
ies conducted at local spatial scales have mapped the distribu-
tion, diversity and abundance of fungal plant pathogens, 102223
in relation to both abiotic and biotic factors across various nat-
ural ecosystems and agroecosystems.[®2*2”] However, a broader
synthesis aiming to understand the patterns and potential un-
derlying drivers of soil pathogenic oomycete distribution at broad
geographic scales is still lacking, and understanding their unique
ecological responses is essential for developing effective manage-
ment and control strategies.

Based on the disease triangle concept, the interactions between
pathogens, hosts and environment are crucial for the emergence
of plant diseases,?®! and several abiotic and biotic factors have
been attributed to the structuring of soil pathogenic oomycete
communities.[?>3°] Water availability is one of the primary fac-
tors determining the distribution, diversity and abundance of
soil oomycetes, since high humidity promotes the reproduction
of most oomycetes by facilitating sporangial release, zoospore
swimming and asexual sporangia production.?3!l Moreover,
oomycetes may be adapted to grow in a particular temperature
range,3? as warmer environments are often beneficial for hy-
phae growth, while too high temperatures can be lethal due to
drying of the soils they live in. Oomycete zoospores can encyst,
allowing survival under unfavorable conditions until germina-
tion and production of hyphae once the surrounding environ-
ment regains adequate moisture and nutrient levels.?>*3] No-
tably, cell walls constitute a significant part of oomycete biomass,
which is composed of cellulose and f-glucans. As a result, soil
properties, including carbon, nitrogen and phosphorus avail-
ability can significantly affect the growth and abundance of
soil oomycetes.[#34] Beyond these abiotic factors, co-evolution
with host plants can shape the composition and diversity of
pathogenic oomycetes,**) similar to fungal pathogens.(*¢3”] For
example, specialized pathogen strains can produce highly spe-
cific effector molecules that interact with host immune re-
ceptors or enzymes, resulting in host-specific patterns of co-
evolution.[®] The probability that oomycetes can infect two host
plant species decreases rapidly along with their phylogenetic
distance,3%! and hence, plant species richness is likely to cor-
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relate with the richness of host-specific oomycete pathogens.[*!
Moreover, some generalized pathogenic oomycetes can also in-
crease their abundance by infecting a broader range of hosts
and hence benefit from high plant diversity.*!*2] While previ-
ous research suggests that both abiotic and biotic factors drive
the variation in the richness, composition and abundance of
pathogenic oomycetes, most of this evidence comes from local
case studies.3%4042 We thus poorly understand how abiotic and
biotic factors shape oomycete richness, composition and abun-
dance across larger spatial scales. This information is especially
important for predicting how global change and biodiversity loss
will affect oomycete distribution and range expansion in the fu-
ture.

Here, we conducted a large-scale field survey of 972 soil sam-
ples from 244 natural grassland sites in China, covering three
main grassland types (meadow grassland, typical grassland and
desert grassland) spanning over 4000 kilometers. Grasslands
cover 26% of the global terrestrial surface, play an essential
role in biodiversity maintenance, climate regulation and carbon
storage,!*}! and contain abundant pathogenic oomycetes that vary
from biotrophs (e.g., Albugo and Peronospora) to hemibiotrophs
(e.g., Phytophthora) and necrotrophs (e.g., Pythium). Field sur-
veys across large spatial scales can hence provide an ideal sys-
tem to disentangle the relative importance of abiotic and bi-
otic factors in shaping the richness, composition and abun-
dance of pathogenic oomycetes. To enable the identification of
pathogenic oomycete taxa, we established an oomycete annota-
tion database, Oomydb, including reference sequences and tax-
onomic information, as well as guild types at the genus level.
By referencing to Oomydb database, a total of 1532 pathogenic
oomycete zOTUs (Zero-radius Operational Taxonomic Units)
were identified using amplicon sequencing based on internal
transcribed spacer 1 (ITS1) gene. Additionally, we constructed
a plasmid with primers to quantify the absolute abundance of
soil pathogenic oomycetes (see Experimental Section below) in
each sample. By combining 18 biotic and abiotic factors ob-
tained from databases and field surveys, we analyzed which fac-
tors best explained oomycetes richness, abundance and distribu-
tion, and then performed distribution projections with space-for-
time methods to address the following questions: (i) Do richness
and absolute abundance of pathogenic oomycetes differ between
three grassland types (meadow grassland, typical grassland and
desert grassland)? (ii) What underlying abiotic and biotic fac-
tors affect pathogenic oomycete richness, community composi-
tion and abundance? (iii) What will the predicted future distri-
bution patterns of pathogenic oomycete richness and absolute
abundance be based on future climate change scenarios (SSP 1-
2.6 and SSP 5-8.5)?

2. Results

Based on the field survey across China’s grasslands spanning
4000 kilometers, we first built a dataset of 2269 zOTUs to iden-
tify phytopathogenic oomycetes at the genus level with high
confidence. These zOTUs belonged to 5 orders (mainly Per-
onosporales and Saprolegniales), 11 families (mainly Pythiaceae,
Saprolegniaceae and Peronosporaceae) and 15 genera (mainly
Globisporangium, Saprolegnia, Phytophthora and Pythium). Of
all zOTUs, 1532 zOTUs (67.52%) were classified as “potential
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Figure 1. Geographic distribution of 244 study sites across three grassland types within China’s main grasslands, and the relationships between 18
biotic and abiotic factors, including geomorphological and climatic factors, soil properties, plant community characteristics, and the richness, absolute
abundance and community composition of pathogenic oomycetes. a) The figure presents the distribution of three natural grassland types (meadow
grassland, typical grassland and desert grassland) in China based on the Albers projection. b) Size of the boxes in the figure represents the correlation
coefficients between environmental variables, with green and blue indicating positive and negative relationships, respectively. The dotted lines in the
figure represent non-significant correlations between the richness/absolute abundance/composition of soil pathogenic oomycetes and the correspond-
ing environmental factors. Green and purple solid lines indicate positive and negative correlations, respectively, between soil pathogenic oomycete
richness/absolute abundance and environmental factors, with the width of lines reflecting the strength of Spearman’s correlation analysis and Mantel
test. The 18 biotic and abiotic variables include longitude, latitude, elevation, mean annual temperature (MAT), mean annual precipitation (MAP), tem-
perature (TSEA) and precipitation seasonality (PSEA), solar radiation, plant species richness, plant biomass, soil moisture, soil pH, soil carbon (Soil
C), soil nitrogen (Soil N), soil total phosphorus (Soil TP), soil available phosphorus (Soil AP), ammonia nitrogen (Soil AN) and nitrate nitrogen (Soil
NN). ¢)The difference in pathogenic oomycete richness and absolute abundance between different grassland types (MS: meadow grassland, TS:typical
grassland and DS:desert grassland) based on Mann-Whitney U tests (Different letters indicate significant differences between the groups using letter
notation). d) The principal coordinate analysis (PCoA) comparing differences in pathogenic oomycete community composition between three different
grassland types (MS: meadow grassland, TS: typical grassland and DS: desert grassland). e) The Venn plot shows the counts of zOTUs that are shared
among or unique to desert grassland (DS), typical grassland (TS) and meadow grassland (MS).

plant pathogenic” taxa based on oomycete annotation database
(Oomydb), which we constructed (see Experimental Section be-
low). These phytopathogenic taxa were mainly dominated by Glo-
bisporangium (48.4%), Phytophthora (20.3%) and Pythium (18.9%)
(Table S2, Supporting Information). The richness (i.e., number
of zOTUs) and absolute abundance (i.e., number of gene copies
per gram of soil) of soil pathogenic oomycetes ranged from 2 to
135 zOTUs and 5 to 8 990 9538 gene copies/g soil, respectively,
across all soil samples.

2.1. Impacts of Grassland Types on Soil Pathogenic Oomycetes
Given that varying attributes of different grassland types poten-

tially influence soil pathogenic oomycetes, we compared their
richness and absolute abundance between three grassland types.
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We found that richness (y2 = 30.952, p < 0.001) and abso-
lute abundance (y2 = 226.08, p < 0.001) of soil pathogenic
oomycetes were significantly different between grassland types:
the highest pathogenic oomycete richness was observed in typi-
cal grasslands (the mean number of pathogenic oomycete zZOTUs
= 44.79 per sample), followed by meadow grasslands (the mean
number of pathogenic oomycete zOTUs = 43.23 per sample)
and desert grassland habitats (the mean number of pathogenic
oomycete zOTUs = 36.05 per sample; Figure 1c). In contrast to
oomycete richness, absolute abundance of pathogenic oomycetes
was the highest in meadow grasslands (the mean gene copies
of pathogenic oomycete zOTUs = 3.13 x 10° per gram soil), fol-
lowed by typical grasslands (the mean gene copies of pathogenic
oomycete zOTUs = 4.58 x 10° per gram soil) and desert grass-
land habitats (the mean gene copies of pathogenic oomycete zO-
TUs = 2.31 x 10° per gram soil). The community composition of
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pathogenic oomycetes also differed between different grassland
types (F, o560 = 12.049, p < 0.001, R? = 0.024; Figure 1d). Meadow
grasslands presented more unique pathogenic oomycetes than
desert grasslands and typical grasslands (Figure le). Together,
these findings suggest that Chinese grasslands harbor a high di-
versity of phytopathogenic oomycetes that vary depending on the
grassland type.

2.2. Assessing the Relative Importance of Different Abiotic and
Biotic Factors Associated with Soil Pathogenic Oomycetes in
Grasslands

We next used the Spearman’s rank correlations to assess the
effects of geomorphologic and climate factors, soil properties
and plant community characteristics on the richness and abso-
lute abundance of soil pathogenic oomycetes across all grass-
land types. Overall, climatic factors, soil properties and plant
community characteristics played important roles in shaping the
richness and absolute abundance of soil pathogenic oomycetes
(Figure 1b). Specifically, we found that soil available phosphorus
was positively associated with soil pathogenic oomycete richness
(Spearman’s r = 0.38, p < 0.001; Figure 1b), especially in typical
grasslands (Spearman’s r = 0.29, p < 0.001) and meadow grass-
lands (Spearman’s r = 0.62, p < 0.001), while mean annual pre-
cipitation, plant biomass, plant species richness and soil prop-
erties were positively associated with the absolute abundance of
soil pathogenic oomycetes (Figure 1b). Furthermore, the Mantel
test was used to explore the impact of multiple variables on the
community composition of soil pathogenic oomycetes. The re-
sults showed that mean annual precipitation (Mantel’s r = 0.21,
p < 0.001), soil moisture (Mantel's r = 0.21, p < 0.001) and
soil nitrogen (Mantel’'s r = 0.22, p < 0.001) clearly affected the
community composition of soil pathogenic oomycetes across the
whole data. While the typical and meadow grasslands exhibited
relatively similar response patterns, the associations observed in
desert grasslands were weaker, with only a few statistically sig-
nificant relationships observed (Figures S4 and S7 and Tables S8
and S9, Supporting Information).

To distinguish the relative importance of different envi-
ronmental variables in predicting the richness of pathogenic
oomycetes across whole data, we employed a full Bayesian mixed-
effects model to examine how climatic factors, soil properties
and plant community characteristics affected soil pathogenic
oomycete richness. All environmental variables in Bayesian
mixed-effects models were tested for multicollinearity before in-
clusion in the model (Table S5, Supporting Information). Among
these predictors, we found that only soil available phosphorus in-
creased the richness of soil pathogenic oomycetes (slope = 2.48,
95% ClIs = 1.35 to 3.58), explaining more than 18.3% of the total
variation (Figure 2a,c and Tables S5 and S6, Supporting Infor-
mation). We further analyzed these effects for the dominant gen-
era of soil pathogenic oomycetes and found that the richness of
the three most abundant genera (i.e., Globisporangium, Pythium
and Phytophthora) was positively associated with soil available
phosphorus (Figure S6, Supporting Information). These results
highlight the critical role of soil phosphorus availability in de-
termining phytopathogenic oomycetes richness. However, other
variables could not predict the variation of pathogenic oomycetes
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well, and the responses of major pathogenic oomycete genera
were not consistent.

We next explored the effect of the same environmental vari-
ables on pathogenic oomycete absolute abundance. Based on
Bayesian mixed-effects model, we found that soil pathogenic
oomycete absolute abundance was positively associated with
mean annual precipitation (slope = 0.17, 95% CIs = 0.06 to 0.28),
seasonality of temperature (slope = 0.13, 95% CIs = 0.03 to 0.22),
plant species richness (slope = 0.19, 95% ClIs = 0.12 to 0.26),
plant biomass (slope = 0.05, 95% CIs = 0 to 0.11) and soil to-
tal phosphorus content (slope = 0.09, 95% CIs = 0.01 to 0.16)
(Figure 2b and Table S5, Supporting Information). Among these
variables, plant species richness explained most of the variation
in phytopathogenic oomycete absolute abundance (13.24%), fol-
lowed by mean annual precipitation (8.80%), temperature sea-
sonality (6.91%), soil total phosphorus content (5.94%) and plant
biomass (5.18%) (Figure 2d and Table S6, Supporting Informa-
tion). Especially the abundance of most destructive oomycete
genera, including Phythium and Phytophthora, showed strong
and consistent correlations with plant species richness and mean
annual precipitation (Figure S6, Supporting Information). To fur-
ther assess the influence of climatic conditions during the year
of sampling, we employed a linear mixed-effects model and also
observed a positive effect of precipitation during both sampling
years (2021: Z = 2.850, p = 0.004; 2022: Z = 6.640, p < 0.001) on
the absolute abundance (Figure S8 and Table S12, Supporting In-
formation). Together, these results suggest that soil phosphorus
was an important factor determining oomycete richness, while
plant richness, precipitation and temperature seasonality were
important in explaining highly pathogenic oomycete abundance
across Chinese grasslands.

2.3. Direct and Indirect Influences of Abiotic and Biotic Factors
on Soil Pathogenic Oomycetes

To reveal the potential direct and indirect effects of climatic, soil
and plant factors on the richness and abundance of pathogenic
oomycetes, we constructed Bayesian structural equation models
based on our a priori knowledge (Figure S5, Supporting Infor-
mation). The Bayesian structural equation model adequately fit-
ted the data, with four split Markov Chain Monte-Carlo chains
at recommended convergence (Rhat = 1), and all posterior esti-
mates showed well-behaved distributions with acceptable uncer-
tainty intervals (Figure 3). By estimating the direct and indirect
effects of each variable in standardized pathway coefficients of
the Bayesian structural equation model, we detected soil avail-
able phosphorus (slope = 0.10, 95% ClIs = 0.05 to 0.15) played
an important role in explaining the variance in soil pathogenic
oomycete richness (Figure 3a). Moreover, the mean annual pre-
cipitation increased soil pathogenic oomycete absolute abun-
dance, through both direct (slope = 0.28, 95% CIs = 0.17 to 0.40)
and indirect effects via plant biomass, plant species richness, soil
available and total phosphorus (Figure 3). These findings suggest
that climatic factors influenced pathogenic oomycete richness in-
directly through soil available phosphorus, whereas their effects
on pathogenic oomycete absolute abundance were mediated di-
rectly or indirectly, primarily through plant species richness.
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Figure 2. The effects and contribution of climatic factors, soil properties, plant community characteristics to richness and absolute abundance of
pathogenic oomycetes. a) The effects on the richness of soil pathogenic oomycetes. b) The effects on the absolute abundance of soil pathogenic
oomycetes. ¢) The contribution on the richness of soil pathogenic oomycetes. d) The contribution on the absolute abundance of soil pathogenic
oomycetes. The distribution, mean, 50% and 95% confidence intervals for the values of each estimated effect and contribution are presented in the

figure.

2.4. Current and Future Distribution Projections of Soil
Pathogenic Oomycetes in Chinese Grasslands

As mean annual precipitation played a dominant role in predict-
ing variation in the soil pathogenic oomycete absolute abundance
(Figure 3), we used information on the current oomycete dis-
tribution in grasslands based on four climatic variables (MAT,
MAP, TSEA, PSEA) to project their future richness and absolute
abundance in China along with climate change. While soil avail-
able phosphorus was an important determinant of richness, cli-
mate variables were prioritized in projections due to their strong

Adv. Sci. 2025, 12, e01994 e01994 (5 of 14)

large-scale influence and availability in future climate models.
Currently, the area around western Sichuan harbors the highest
level of soil pathogenic oomycete richness (Figure 4a), whereas
the eastern Qinghai-Tibetan Plateau and the Greater Khingan
Range have the relatively higher phytopathogenic oomycete abso-
lute abundance (Figure 4b). Future projections were performed
for soil pathogenic oomycete richness and absolute abundance
in 2040 based on the climatic forecasts of the different shared
socioeconomic pathway (SSP) scenarios 1-2.6 and 5-8.5 (repre-
sented sustainable and unsustainable future climate change sce-
narios, respectively) published by the Intergovernmental Panel
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Figure 3. Results ofthe Bayesian structural equation models and the standardized effects of environmental variables on richness and absolute abundance
of pathogenic oomycetes. a) The results reflect the influence of mean annual temperature (MAT), annual precipitation (MAP), temperature seasonality
(TSEA), and precipitation seasonality (PSEA) in modulating the richness and absolute abundance of pathogenic oomycetes via plant biomass, plant
species richness, soil available phosphorus (Soil AP), and soil total phosphorus (Soil TP). The coefficient estimates of the significant paths and the
R-squared values of the response variables are labeled in the figure. Green and purple arrows represent positive and negative effects, respectively, while
grey dotted arrows represent non-significant path coefficients. b) The effects (including direct, indirect, and total effects) of the variables involved in

SEM on the richness; and absolute abundance of soil pathogenic oomycetes.
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Figure 4. Current status and temporal projections (2040) of pathogenic oomycetes richness and absolute abundance (log-transformed) across China’s
main grasslands. a) The projection of the current distribution for soil pathogenic oomycete richness. b) The projection of the current distribution for soil
pathogenic oomycete absolute abundance. c) The changes in soil pathogenic oomycete richness between current and SSP 1-2.6 scenarios in 2040. d) The
changes in soil pathogenic oomycete absolute abundance between current and SSP 1-2.6 scenarios in 2040. e) The change in soil pathogenic oomycete
richness between current and SSP 5-8.5 scenarios in 2040. f) The change in soil pathogenic oomycete absolute abundance between current and SSP
5-8.5 scenarios in 2040. The prediction models were made using random-forest analysis using the climate variables (mean annual temperature, annual
precipitation, temperature and precipitation seasonality). The mapping areas include the main grassland regions in China, which are mainly distributed
in the Qinghai-Tibetan Plateau and Inner Mongolia.
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on Climate Change (IPCC). Although the overall area of increas-
ing oomycete richness expanded under both climate scenarios,
an obvious increase was observed in meadow grasslands, partic-
ularly under the SSP 5-8.5 scenario (Figure S9, Supporting Infor-
mation). ~42% of the grassland areas were predicted to experi-
ence a potential increase in oomycete disease risk, with a notable
portion of the increase occurring in typical and meadow grass-
lands. Surprisingly, the spatial extent of increased oomycete rich-
ness and absolute abundance in desert grasslands was greater
under SSP 1-2.6 than under SSP 5-8.5. Moreover, we identified
that Hulunbuir, the eastern Greater Khingan Range and Chifeng
in Inner Mongolia, and eastern Qinghai-Tibetan Plateau, could
be facing significantly higher risks under global change as these
areas are projected to have higher soil pathogenic oomycete rich-
ness and/or absolute abundance (Figure 4c—f).

3. Discussion

In this study, we identified 1532 zOTUs as potential plant
pathogenic oomycetes, accounting for 67.52% of total zOTUs we
found. The proportion of plant pathogenic oomycetes is much
higher than that of fungi and bacteria,[?***] which is closely re-
lated to their life history characteristics and their long-term co-
evolution with host plants.[?®] Our results reveal that soil avail-
able phosphorus played a crucial role in driving soil pathogenic
oomycete richness, which is different from fungal and bacterial
pathogens whose abundance and distribution have been shown
to be driven by temperature, precipitation, and soil pH.[192>%5]
In contrast, the community composition of soil pathogenic
oomycetes was regulated by water availability (i.e., mean annual
precipitation and soil moisture) and soil nitrogen content, while
absolute abundance was largely regulated by mean annual pre-
cipitation, temperature seasonality and plant species richness.
This demonstrates that climatic factors, plant community charac-
teristics and soil properties collectively drive the diversity, abun-
dance and distribution of soil pathogenic oomycetes, reflecting
the complex interactions between pathogenic oomycetes and bi-
otic and abiotic factors in natural ecosystems.!?04¢] Finally, we
used the created database to predict oomycete’s current distri-
bution and response to two different climate change scenarios,
which both suggested increased risk of disease outbreaks in the
future. Together, our findings suggest that diverse and abundant
phytopathogenic oomycete populations exist in natural grass-
land ecosystems which could form environmental reservoirs for
pathogen spillover into agricultural environments.

Our results showed that soil pathogenic oomycete richness
was positively associated with soil available phosphorus. Phos-
phorus is a vital component of oomycete cellular composi-
tion and also participates in the synthesis of different sub-
stances for metabolism (i.e., nucleic acid, phosphatase) and
energy conversion (i.e., ATP, ATPases).*’] Specifically, phos-
phorus is important for the synthesis of several virulence fac-
tors in oomycetes, including endocellulases, 1,3-b-glucanases,
p-glucosidases, cutinases, pectin-esterases, galactanases, and
endopolyga-lacturonases.[*'*#] Compared to soil carbon (espe-
cially organic carbon) and nitrogen, which generally reflect over-
all soil fertility or microbial biomass, available phosphorus is
more responsive to better capture the immediate ecological con-
ditions influencing pathogenic oomycetes.[*”] Its fast turnover
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and role in oomycete life activities may make it a more direct
driver of oomycete diversity. The positive correlation is also in
line with the results for pathogenic fungi,®®! while a negative
correlation between soil available phosphorus and the richness
of mycorrhizal fungi has also been demonstrated;’®! this op-
posing pattern may reflect differences in ecological processes
and nutrient acquisition mechanisms between different func-
tional groups. High phosphorus availability may also influence
host plant quality and alter disease-suppressive soil microbiome,
thereby allowing a more diverse oomycete population to survive
in natural populations.[®>* Surprisingly, plant species richness
was a poor predictor of the variance in pathogenic oomycete
richness, which is inconsistent with a previous multi-vegetation-
pathogen study where the richness of soil pathogenic oomycetes
was mainly explained by plant community characteristics.[*?!
One likely explanation for this discrepancy could be the rel-
atively broader plant host range of grassland soil pathogenic
oomycetes compared to oomycetes found in monocultural agroe-
cosystems, which tends to cause enrichment of specialized
oomycete pathogens.[?’] The grassland ecosystems hold high
plant species diversity (nearly 40 species within 1 square meter in
some meadow grassland sites we sampled), where both specialist
(i-e., Peronospora, Albugo) and generalist pathogenic oomycetes
were commonly present.l’>] Specifically, we found that gener-
alist oomycetes, including Pythium, Phytophthora and Phytopy-
thium, dominated these communities. Therefore, it is not sur-
prising that plant species richness was not a strong predictor of
pathogenic oomycete richness in grassland ecosystems because
as generalists they could likely infect multiple different plant
species.?¢]

Mean annual precipitation, plant species richness and
soil properties could explain the community composition of
pathogenic oomycetes. Overall, higher water availability could be
indicative of the number of suitable environments available for
oomycetes, hence improving their survival and colonization.>®!
While plant diversity did not explain oomycete diversity, we ob-
served clear effects of plant species diversity on oomycete com-
munity composition. It is possible that the interactions between
pathogenic oomycetes and plant communities may be more com-
plex in wetter areas (e.g., western Sichuan), where intense plant-
soil feedbacks and negative density dependence driven by con-
specific pathogens plays a critical role in also maintaining high
plant diversity.>’~%°l Moreover, the dominant taxa of pathogenic
oomycetes identified in this study, including Globisporangium,
Pythium and Phytophthora, responded positively to humidity,
which further confirmed the hydrophilicity of comycetes.[>%]
More work is required to try to disentangle the direct and indirect
roles of soil moisture on phytopathogenic oomycetes and their
plant host distribution in the future.

We found that mean annual precipitation, temperature sea-
sonality, soil total phosphorus, plant biomass and plant species
richness were all positively associated with the absolute abun-
dance of soil pathogenic oomycetes. These patterns are in line
with previous studies, which have suggested that climatic vari-
ables are essential drivers of fungal disease prevalence at both
local and global scales.!?>®!l The absolute abundance of phy-
topathogens are generally considered to be more closely re-
lated to the disease prevalence, while several global analyses
have also identified climate-driven patterns explaining pathogen
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abundance variation.['%2*] Mechanistically, an increase in air hu-
midity or soil moisture promotes the growth of hyphae and pro-
liferation of oomycete spores and such growth-promoting effects
are especially noticeable for hydrophilic comycetes.[#7%2] Simi-
lar to a global study demonstrating that temperature is a domi-
nant driver in predicting relative abundance of soil pathogenic
fungi,’% we found that seasonal fluctuations in temperature
(i-e., temperature seasonality) positively associated with absolute
abundance of soil pathogenic oomycetes. This may be attributed
to the fact that relatively broader temperature range during the
plant growth seasons might increase the colonization opportu-
nities for oomycetes and reduce the risks of local extinctions!*’!
— an example of potential storage effect.[*%*] This could be fur-
ther promoted by the oomycetes’ ability to form cysts or chlamy-
dospores that allow them to survive in a dormant state during
unsuitable growth conditions.[2%4¢] Overall, oomycete abundance
was predicted by multiple biotic and abiotic factors that likely had
direct effects on the oomycetes and their associated host plants.

Plant-pathogen interactions are located at the center of dis-
ease ecology,?®l and plant pathogens largely depend on plant
diversity and biomass for their growth and survival.l??] In line
with this, we found that the absolute abundance of pathogenic
oomycetes was positively associated with plant biomass and plant
species richness. According to the trophic cascade hypothesis, %]
higher plant biomass also supports more pathogens by provid-
ing more resources to lower trophic levels.[®! The positive asso-
ciation between plant species richness and absolute abundance
of soil pathogenic oomycetes may also be due to provision of a
higher number of specialized ecological niches for pathogenic
oomycetes.3040671 Higher plant diversity can support a wider
range of pathogenic taxa, thus facilitating the proliferation of
pathogenic oomycetes at the community level. Increased plant
diversity may also enhance overall root biomass and rhizosphere
complexity, creating more microhabitats and resource niches fa-
vorable for oomycete survival and growth.[®®! Furthermore, cli-
mate factors can also indirectly regulate pathogenic oomycetes by
altering plant communities.[®! By constructing Bayesian mixed-
effects models and structural equation models, we found that
the associations of climatic factors and plant community charac-
teristics on soil pathogenic oomycete richness were surprisingly
insignificant compared to soil available phosphorus, whereas
mean annual precipitation could largely explain the variations
in absolute abundance through both direct and indirect path-
ways. Specifically, precipitation was positively associated with
the plant species richness (consistent with a previous study
across China’s grasslands),/’”) which indirectly increased the ab-
solute abundance of pathogenic oomycetes. Hence, in addition
to the direct effects of climatic factors, the indirect climate ef-
fects on pathogenic oomycetes via plant communities should
also be taken into consideration when assessing disease risks.!*"]
While experimental work is required to causally demonstrate
such links, our study suggests that SEM could be an useful way to
identify potential causal relationships and associations between
different variables.

Moreover, our results indicate that grassland types exhibit
distinct oomycete distribution patterns and responses to en-
vironmental factors. In particular, the weaker and less con-
sistent responses were observed in desert grasslands, which
may be attributed to different plant characteristics and resource
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constraints.’!) For example, low plant diversity and biomass typi-
cal for desert grasslands likely constrains oomycete host availabil-
ity, thereby weakening plant-pathogen interactions.*! Moreover,
drought and resource scarcity may directly limit oomycete sur-
vival and activity, resulting in diminished ecological sensitivity.[”?]
These results highlight the importance of considering habitat-
specific conditions when assessing the ecological risks posed
by soil-borne pathogens. Our analyses included a limited set
of environmental variables, which may introduce some uncer-
tainty due to lack of information on microclimatic and ex-
treme weather effects.’] Incorporating these environmental and
their potential interactions in the future studies may help bet-
ter capture regional ecological oomycete density and community
dynamics.

Most previous studies have focused on the relative abundance
of plant pathogens,!'%%] even though pathogen absolute abun-
dance could be considered a more meaningful measure from an
ecological perspective, allowing quantification of actual exposure
and disease risks in ecosystems.[?>73] While various (generalized)
linear models have been employed to analyze distribution pat-
terns along environmental gradients, these models often only re-
flect the overall driving effect of the environment and lack the
synergistic effects between different variables.[**) More advanced
analytical methods, such as machine learning, have emerged to
help us predict oomycete distribution patterns more intuitively
and comprehensively in the face of climate change from different
spatial and temporal perspectives,!'%237*] which provided prac-
tical guidance for preventing the oomycete disease outbreak in
grasslands. Currently, locations with high precipitation tend to
have higher risks of pathogenic oomycete outbreaks, and these
risks are likely to become more intense in the future, which
could pose risks for food production as these areas are highly pro-
ductive and good-quality pasture lands.l””! While climate change
could have strong local effects, for example, via increased pre-
cipitation that favor oomycete survival and reproduction, it could
also shift the local distribution of pathogenic oomycetes, enabling
them to expand their range to previously unsuitable areas.!”®! For
example, although SSP 1-2.6 represents a sustainable develop-
ment scenario, it projects greater increases in precipitation in
arid grasslands compared to SSP 5-8.5, which could promote
the expansion of pathogenic oomycetes in those regions. How-
ever, under the SSP 5-8.5 scenario, more meadow and typical
grassland areas are projected to experience even higher increases
in precipitation than under SSP 1-2.6, thereby further elevating
the risks of oomycete-related diseases. Climate change-associated
factors could hence promote pathogen spillover from natural to
agricultural ecosystems, resulting in catastrophic disease out-
breaks and reducing the productivity of agricultural and animal
husbandry related activities.!”®]

Together, our large-scale survey across China’s main grass-
lands highlights the critical and delicate effects of abiotic factors
and plant communities in shaping the diversity, abundance and
distribution of phytopathogenic oomycetes. Specifically, by creat-
ing an atlas of current distribution, abundance and diversity of
oomycetes in China, we were able to predict the potential future
risks of oomycete- associated plant diseases under projected cli-
mate scenarios, with higher levels in most fertile grasslands (typ-
ical and meadow grasslands) in China. These results highlight
the urgency for adapting grassland agricultural management and
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pathogen control strategies for the future to maintain food secu-
rity in the face of global climate change.l”’]

4. Experimental Section

Sampling Design and Data Collection: A large-scale survey across
China’s main grasslands, covering most parts of Qinghai-Tibet Plateau
and Inner Mongolia Plateau was conducted from mid-July to mid-August
between 2021 and 2022. Given the broad geographic scope and large
number of sampling sites, sampling spanned two consecutive years. To
minimize potential biases associated with phenological differences or cli-
matic variation across years, the survey was carefully scheduled and con-
ducted simultaneously along multiple parallel routes, ensuring that sam-
pling in each region was completed within a relatively narrow time window
at the peak of the growing seasons.l”8l A total of 972 samples originat-
ing from 244 study sites were collected, which covered a latitudinal gra-
dient of ~#26.98°-50.15°N, a longitudinal gradient of ~79.03°-121.50°E,
and spanned an elevational gradient of ~403-4961 m a.s.|. (Figure 1a).
Mean annual temperature and precipitation at the study sites ranged be-
tween ~—5.7-10.0 °C and ~27-924 mm, respectively. These geographi-
cal and climatic gradients were chosen based on previous studies report-
ing significant variation in pathogenic oomycetes richness and absolute
abundance.[7>#0] The exact study sites were selected based on no visible
signs of cultivation, intensive grazing, clipping or other human activities,
and based on their location far away from any urban areas. Chosen sites
were located at least 500 meters from the closest main road and a mini-
mum 50 kilometers from each other to ensure even distribution and inde-
pendence of each study site.

For each site, we established four replicate sampling quadrats of 0.5 x
0.5 m (0.25 m?) at the corner of a 50 X 50 m sampling plot. Geograph-
ical information (i.e., longitude, latitude, elevation) for each quadrat was
collected by using a GPS element (DCM84B, Dongmei Measuring Instru-
ments Ltd., China). In each quadrat, we recorded the number of different
plant species (plant richness) and clipped and collected plant biomass
at the species level. Five soil cores (5 cm diameter and 15 cm depth)
were collected arbitrarily and combined from each quadrat, targeting the
soil layer with high microbial activity, including oomycetes, and frequent
plant-microbe interactions.[3"4%1 Soil cores were subsequently placed in
an icebox for refrigeration and a total of 972 soil samples were collected.
Upon arrival at the laboratory, soil samples were immediately sieved (2
mm mesh) and split into three subsamples. One subsample was frozen
at ~20 °C for metabarcoding sequencing, the second subsample was used
for analysis of soil physicochemical properties, and the third subsample
was set aside at ~80 °C for storage in case of verification.

Quantification of Environmental Variables at Sampling Sites: A total of
18 biotic and abiotic variables were measured and used for the following
analyses based on their potential for predicting pathogenic oomycete rich-
ness and absolute abundance (Table S1, Supporting Information).[27:30:40]
Geomorphologic and climatic factors were recorded at the site level, while
soil properties and plant community characteristics were measured for
each quadrat.

To collect climatic data at each site, we obtained mean annual temper-
ature (MAT), annual precipitation (MAP), and temperature and precipi-
tation seasonality (TSEA and PSEA) data from the WorldClim database
v2.1 (http://www.worldclim.org; 1 km resolution) based on the coordi-
nates of each site;[3' this data reflects the long-term seasonal changes
in climatic conditions for each study site. Given the potential interannual
climate variability, we extracted temperature and precipitation data for the
sampling year (2021-2022) from the FLDAS Noah Land Surface Model L4
to support the interpretation of the results.[32] Additionally, we included
net downward shortwave radiation data from FLDAS database to account
for the potential influence of elevated solar radiation on microorganisms
in certain sampling regions, such as the Tibetan Plateau.[?]

Plant community characteristics included plant species richness and
aboveground biomass. The aboveground plant biomass was determined
at species level for all quadrats and plant species identified using the “Flora
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of China” identification guide.[®*] The number of different plant species
detected at each quadrat was used as plant species richness index. After
drying the aboveground plant samples in incubators at 65 °C for 72 h, the
weight of each species for all quadrats was weighed to the nearest 0.1 mg.
For each quadrat, the total dry weight of all plant species was calculated
as the plant biomass.

All soil samples were analyzed using standardized protocols to avoid
any bias between research laboratories, followed the methods described
in Hu et al.3] To characterize the soil fertility at each location, we mea-
sured eight soil properties: soil moisture (%), soil pH, soil carbon (%; Soil
), soil nitrogen (%; Soil N), soil total phosphorus (%o; Soil TP), soil avail-
able phosphorus (mg kg™"; Soil AP), soil ammonia nitrogen (mg kg™"; Soil
AN) and soil nitrate nitrogen (mg kg™"; Soil NN). The rest of the sieved
soil was divided into two parts; one part was air-dried and stored for a
month to analyzes for soil moisture, soil pH, soil carbon, soil nitrogen,
soil total and available phosphorus, the other was stored at —20 °C for
determination of nitrogen in different forms. Pristine sieved soil and dried
soil was weighed for moisture measurement; soil pH was determined with
a pH meterin a 1:5 mass-to-volume soil-water suspension; soil carbon and
nitrogen content were determined using an elemental analyzer (Elemen-
tar vario MACRO cube, Elementar, Germany); soil total phosphorus was
analyzed by molybdenum-antimony colorimetry with acid digestion, soil
available phosphorus by sodium bicarbonate leaching, and ammoniacal
nitrogen and nitrate nitrogen by potassium sulphate leaching, which were
all finally measured on a SmartChem 450 Automatic Discrete Chemistry
Analyzer (SmartChem Technologies Ltd, Italy).

Oomycetes Abundance Quantification with Plasmid and Sequencing:
This work constructed a plasmid with primers targeting internal tran-
scribed spacer 1 (ITS1) to quantify soil oomycetes abundance. ~160
bp artificial DNA fragment was synthesized and ligated with forward
and reverse oomycete-specific primers (Forward primer OOMUP18Sc: 5'-
TGCGGAAGGATCATTACCACAC -3/, and reverse primer ITS2-OOM: 5'-
GCAGCGTTCTTCATCGATGT -3’) at both fragment ends. OOMUP18Sc
and ITS2-OOM were used to amplify the ITST rRNA region of
oomycetes.[8-88] The fragment with ligated primers was then inserted into
the EcoRV restriction enzyme site of the vector pUC57-Amp (GENEWIZ,
China) after 50 ul of plasmid solution with known concentrations (~1.25
pg uL~") was mixed with 500 mg of the soil to create a quantitative stan-
dard, the concentration was measured by a NanoDrop Microvolume Spec-
trophotometer (NanoDrop One, Thermo Fisher Scientific Inc., USA). Con-
sidering that the loss of plasmid and soil microbial DNA was equivalent
during the extraction and amplification, we adjusted the number of se-
quenced oomycete reads with the number of artificial plasmid fragment
reads during bioinformatics analysis (see Bioinformatics analyses below)
to quantify absolute oomycete abundance in soil samples.

Total genomic DNA and plasmid from each sample was extracted us-
ing FastDNA SPIN Kits for Soil (MP Biomedicals, USA) according to the
manufacturer’s protocol. The fragments were amplified using polymerase
chain reaction (PCR) in two steps, the first PCR step for amplifying the ITS1
target fragments and the second was Solexa PCR for ligating the bridging
sequences, which were required to identify the samples in sequencing. The
first PCR reaction for the ITS1 fragment was performed with the following
mixture per sample: 50 ng of DNA template, 0.3 ul of each ITS primer (10
uM), 5 ul KOD FX Neo Buffer, 2 ul of dNTP (2 mM each), 0.2 ul of KOD
FX Neo enzyme (TOYOBO, Japan), and ddH2O to reach a final volume of
10 ul. The PCR programme followed: 1 cycle of 95 °C for 5 min, followed
by 25 cycles of 95 °C for 30 s, 50 °C for 30 s and 72 °C for 40 s, and a
final extension step of 72 °C for 7 min. First PCR products were cleaned
using VAHTS DNA Clean Beads (Vazyme, China). To ligate the bridges se-
quences, the solexa PCR was performed using the following 20 ul mixture
per sample: 5 ul of first PCR cleaned products, 2.5 ul of MPPI-a (2 uM),
2.5 ul of MPPI-b (2 uM) and 10 ul of 2* Q5 High-Fidelity 2* Master Mix
(NEB, England). The solexa PCR programme was as follows: 1 cycle of 98
°C for 30 s, followed by 10 cycles of 98 °C for 10's, 65 °C for 30 s and 72 °C
for 30 s, and a final extension step of 72 °C for 5 min. Final PCR products
were visually evaluated using gel electrophoresis (1.8% agarose gels) to
ensure successful DNA amplification. DNA libraries for each sample were
created and then paired-end sequenced using Illumina Novaseq 6000 at
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Biomarker Technologies Co., Ltd. (Beijing, China). The general process of
microbial quantification and sequencing is shown in Figure S1, Supporting
Information, and the raw reads for all samples were deposited in the China
National Center for Bioinformation database (CNCB) under the accession
numbers PRJCA038309.

Establishment of Oomycetes Annotation Database — Oomydb:  This work
established a reference sequence database for molecular identification of
oomycetes called Oomydb, which was based on the nuclear ribosomal in-
ternal transcribed spacer (ITS) region and included ~26 000 oomycete
sequences with taxonomic and publication information. Oomycetes ITS
sequence data were sourced from the Nucleotide Sequence Database
of the National Center for Biotechnology Information (NCBI, accessed
25.02.2023) to cover all possible ITS sequences of oomycetes using the
following search terms: oomycetesfORGN] AND (internal transcribed
spacer[TITL] NOT uncultured[TITL]).[8] Raw sequences were identified
and dereplicated, and one unique sequence with the longest fragment
length was preserved. After removing the non-oomycete sequences (e.g.,
Ascomycota, Basidiomycota), we corrected the taxonomic lineages based
on authoritative classification systems. The NCBI Taxonomy classifica-
tion was mainly used as the taxonomic backbone for Oomydb by default,
and supplemented with updated information from the Global Biodiversity
Information Facility (GBIF; https://www.gbif.org/) and Index Fungorum
(http://www.indexfungorum.org/).I°%1 Oomydb was applied to the anno-
tation and bioinformatics analyses of the discovered oomycete sequences
in this study.

Bioinformatic Analyses: This work assembled paired-end reads under
the maximum number of 12 bp mismatches for long overlaps using USE-
ARCH version 11.0.667,1°7 and trimmed off both forward and reverse
primer complements before matching merged sequences against Oomydb
database.l??] The sequences with more than 1.0 expected error and < 160
bp were removed, and remaining sequences were truncated to 160 bp in
length. Singletons and chimeric sequences were eliminated, and all se-
quences that passed the quality criteria were kept and assembled into
zOTUs with 100% identity using UNOISE3 with default parameters.[®3]
The taxonomic classification of each zOTU was determined by comparing
against the Oomydb annotation database using the SINTAX function with
a bootstrap cutoff of 0.6.14]

This work obtained a total of 7 456 2072 high-quality ITS rRNA gene
reads and 31189 zOTUs across 972 samples, with the abundance of reads
per sample ranging from 31 084 to 117 505. Almost a third of all of zO-
TUs (29.6%) could be assigned at the family level, 7.3% at the genus level
and only 4.6% were classified at the species level. The composition of
oomycete communities based on the order level is shown in the Figure
S3, Supporting Information. Oomycetes from the orders Albuginales and
Peronosporales were classified as important plant pathogens, and detailed
information of all potential plant pathogenic oomycetes with names and
references at the genus level are listed in Table S2, Supporting Informa-
tion. The number of observed plant pathogenic zOTUs was used as a
measure of species richness and the absolute abundance of potentially
plant pathogenic oomycetes was calculated by dividing the number of their
reads by the number of plasmid reads in the same sample, and multiplying
by the actual reads of plasmid added into soil samples. We generated rar-
efaction curves for all samples to assess and normalize sequencing depth
(Figure S2, Supporting Information), using the function “rarecurve” in the
R package “vegan.” [9°] As the total absolute abundance of potential plant
pathogenic oomycetes calculated by the un-rarefied zOTU table was highly
correlated with the same variable calculated by the rarefied zOTU table
(rarefying to a minimum reads number of 31 084; Pearson’s r=0.999, p <
0.001), thus the un-rarefied zOTU table was chosen to calculate richness
and absolute abundance, in an attempt to generalize the variation in the
overall pathogenic oomycete community. Meanwhile, the absolute abun-
dance of soil pathogenic oomycetes was log-transformed to improve the
normality of residuals in statistical analyses.

Statistical Analyses: To compare the richness and absolute abundance
of soil pathogenic oomycetes in different grassland types, this work con-
ducted the Kruskal-Wallis test and Mann-Whitney U tests to examine the
differences among grassland types. This work then used a permutational
multivariate analysis of variance (PERMANOVA) to test whether the com-
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position of pathogenic oomycetes differed across grassland types. Further,
Spearman’s rank correlation analysis was used to analyze the relationship
between plant pathogenic oomycete richness and abundance in relation
to geomorphologic and climate factors, soil properties and plant commu-
nity characteristics. The strength and direction of associations between
two ranked variables were measured using the “r.corr” function in the R
package “Hmisc.” [°] This analysis was chosen as it does not require the
data to be linearly or normally distributed. This work also assessed the as-
sociation between environmental variables and the richness and absolute
abundance of the top ten plant pathogenic oomycetes genera (i.e., Globis-
porangium, Pythium, Phytophthora, Pseudoperonospora, Hyaloperonospora,
Bremia, Peronospora, Phytopythium, Elongisporangium, Pythiogeton; Figure
S5, Supporting Information).

To examine the relationships between biotic and abiotic factors and
community composition of plant pathogenic oomycetes, this work gen-
erated a zOTU table for oomycetes across all samples and used Mantel
test to calculate the matrix correlations between explanatory variables and
community matrix using the “ggcor” function.[®’] The visualization of the
results was integrated with the Spearman’s rank correlation analysis.

This work further established Bayesian mixed-effects models to com-
pare the relative importance of abiotic and biotic factors in driving plant
pathogenic oomycete richness and absolute abundance, using the R pack-
age “brms.” [°8] All variables were standardized (Mean =0, SD = 1) to al-
low direct comparison of regression coefficients. Before Bayesian mixed-
effects modeling, this work checked the multicollinearity between all in-
cluded variables based on variance inflation factors (VIF < 10), and ge-
ographic variables, solar radiation and soil carbon content with highly
collinearity were removed. In addition, this work constructed a spatial
distance correlation matrix based on pairwise geographic distances de-
rived from site coordinates using a Gaussian decay method,®®] and in-
cluded it with “Site” as a random effect in the models. In each model,
the posterior distribution was sampled with four independent Markov
Chain Monte-Carlo (MCMC) chains with 10 000 iterations each, with
the first 5000 skipped as burn-in. The adapt-delta value, average ac-
ceptance probability of target proposals was set as 0.99 to avoid diver-
gent transitions after warm-up. The convergence of the Markov chains
was tracked by trace plots of posterior samples and when the Gelman-
Rubin convergence statistic (R-hat) was < 1.01, the parameter esti-
mates were considered to have converged to obtain estimated coeffi-
cients and 95% Cls of fixed effects in full models.['®! This work also
calculated variation in plant pathogenic oomycete richness and abso-
lute abundance explained by environmental variables and error, to clarify
the relative importance of variables in predicting potentially pathogenic
oomycetes.

Variables that had significant effects in Bayesian mixed-effects mod-
eling (i.e., MAP, TSEA, plant biomass, plant species richness, soil TP,
soil AP) were chosen to construct structural equation models. Temper-
ature and precipitation were considered as fundamental indicators that
shape the local plant and microbial communities and can provide basic
information for local climatic conditions,[2*57] thus we took all four cli-
matic indicators (MAT, MAP, TSEA, PSEA) into consideration. This work
assumed a hypothesized prior model with these variables and constructed
a structural equation model based on a Bayesian method to explore and
evaluate the direct and indirect effects (via plant community characteris-
tics and soil properties) of climate factors on soil pathogenic oomycetes.
Standardized path coefficients and 95% Cls in the model were obtained
to characterize the effect size and direction of each path. R-squared val-
ues (Varfyed effects/ Valfived effects TValresidual effects) Were calculated usingthe
“bayes_R2” function.l"1 All models were fitted using Stan and its interface
with R in the “brms” package.[??]

Mapping Current and Predicting Future Oomycetes Distribution: This
work employed space-for-time methods to quantitatively predict the cur-
rent and future distribution, richness and absolute abundance of plant
pathogenic oomycetes in grasslands of China. Predictions on oomycete
community composition were not included in the projections, as high spa-
tial turnover and taxonomic uncertainty among oomycete species present
challenges for reliable prediction at broad geographic scales.[3%4?] Given
that climate is the dominant driver shaping vegetation and environment,
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and that predictions of climatic data at fine spatial scales can be easily
accessed under climate change scenarios, this work focused on changes
in the four climatic variables (i.e., MAT, MAP, TSEA, PSEA) in predict-
ing changes in oomycete richness and absolute abundance. This work ex-
tracted raster data of China’s main grassland areas (mainly the Tibetan
Plateau and Inner Mongolia), and estimated the current and future distri-
bution of soil pathogenic comycetes in the region under the two climate
change scenarios. This work obtained multiple-year (2021-2040) climate
projection data under two different climate change scenarios (i.e., SSP 1-
2.6 and SSP 5-8.5, assuming sustainable and unsustainable development
scenarios, respectively) from the WorldClim database at a spatial reso-
lution of 30 arc-seconds73 [https://www.worldclim.org/], including four
climate indicators mentioned above. All maps were visualized in Python
3.1

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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